VC中文网-VC-MFC编程论坛

 找回密码
 立即注册

QQ登录

只需一步,快速开始

查看: 3069|回复: 13

计算机视觉:利用OpenCV和Python进行车辆计数详细步调

[复制链接]

18

主题

54

帖子

39

金币

连长

Rank: 7Rank: 7Rank: 7

积分
162

新兵

发表于 2018-10-16 16:32:56 | 显示全部楼层 |阅读模式
本教程我将分享几个简单步调剂释如何使用OpenCV进行Python对象计数。

需要安装一些软件:
    Python 3OpennCV

1.了解Opencv从摄像头获得视频的Python脚本

import cv2, time#1. Create an object.Zero for external cameravideo=cv2. VideoCapture(0)#1. a variablea=0while True:        a=a+1        #3. Create frame object        check, frame = video.read()        print(check)        print(frame) # Reprsenting image        #6. converting to grascale        gray=cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)        #4. shadow the frame        cv2.imshow("Capturing", gray)        #5. for press any key to out (milisecond)        #cv2.waitKey(0)        #7. for playing        key=cv2.waitKey(1)                if key==ord('q'):                break        print (a)#2. Shutdown the cameravideo.release() cv2.destroyAllWindows
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-1.jpg




2.加载视频

现在我们将开始逐步学习这个车辆计数教程。第一步是打开我们将在本教程中使用的视频录制。Python示例代码如下:
import numpy as npimport cv2cap = cv2.VideoCapture('traf.mp4') #Open video filewhile(cap.isOpened()): ret, frame = cap.read() #read a frame try: cv2.imshow('Frame',frame) except: #if there are no more frames to show... print('EOF') break #Abort and exit with 'Q' or ESC k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release() #release video filecv2.destroyAllWindows() #close all openCV windows
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-2.jpg




3. 在视频窗口中绘图

这部分很是简单,因为我们只在视频上显示文字或画线。

使用Python代码在视频文件中显示文本如下:
import numpy as npimport cv2cap = cv2.VideoCapture('traf.mp4') #Open video filew = cap.get(3) #get widthh = cap.get(4) #get heightmx = int(w/2)my = int(h/2)count = 0while(cap.isOpened()): ret, frame = cap.read() #read a frame try: count = count + 1 text = "Statistika UII " + str(count) cv2.putText(frame, text ,(mx,my),cv2.FONT_HERSHEY_SIMPLEX ,1,(255,255,255),1,cv2.LINE_AA) cv2.imshow('Frame',frame) except: #if there are no more frames to show... print('EOF') break #Abort and exit with 'Q' or ESC k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release() #release video filecv2.destroyAllWindows() #close all openCV windows
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-3.jpg




计算机视觉:利用OpenCV和Python进行车辆计数详细步调-4.jpg




除显示文字,我们还可以绘制线条,圆圈等。OpenCV有许多绘制几何形状的体例
import numpy as npimport cv2cap = cv2.VideoCapture('traf.mp4') #Open video filewhile(cap.isOpened()): ret, frame = cap.read() #read a frame try:  cv2.imshow('Frame',frame) frame2 = frame except: #if there are no more frames to show... print('EOF') break line1 = np.array([[100,100],[300,100],[350,200]], np.int32).reshape((-1,1,2)) line2 = np.array([[400,50],[450,300]], np.int32).reshape((-1,1,2)) frame2 = cv2.polylines(frame2,[line1],False,(255,0,0),thickness=2) frame2 = cv2.polylines(frame2,[line2],False,(0,0,255),thickness=1)  cv2.imshow('Frame 2',frame2)  #Abort and exit with 'Q' or ESC k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release() #release video filecv2.destroyAllWindows() #close all openCV windows
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-5.jpg




计算机视觉:利用OpenCV和Python进行车辆计数详细步调-6.jpg




4.布景分手

此体例通过区散布景和对象(前景)的移动来分手对象。该体例很是广泛地用于进入或离房间计数,交通信息系统中车辆统计,访客数量等。
import numpy as npimport cv2cap = cv2.VideoCapture('traf.mp4') #Open video filefgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True) #Create the background substractorwhile(cap.isOpened()): ret, frame = cap.read() #read a frame  fgmask = fgbg.apply(frame) #Use the substractor  try:  cv2.imshow('Frame',frame) cv2.imshow('Background Substraction',fgmask) except: #if there are no more frames to show... print('EOF') break  #Abort and exit with 'Q' or ESC k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release() #release video filecv2.destroyAllWindows() #close all openCV windows
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-7.jpg




计算机视觉:利用OpenCV和Python进行车辆计数详细步调-8.jpg




在图像中,黑色的图像为布景,而白色的图像是检测的对象。

5.形态转换

图像措置中的形态学,即数学形态学(mathematical Morphology),是图像措置中应用最为广泛的技术之一,主要用于从图像中提取对表达和描绘区域形状有意义的图像分量,使后续的识别工作能够抓住目标对象最为素质〈最具区分能力-most discriminative)的形状特征,如鸿沟和连通区域等。同时像细化、像素化和修剪毛刺等技术也常应用于图像的预措置和后措置中,成为图像增强技术的有力弥补。

经常使用的形态学操作:包含侵蚀、膨胀, 以及开、闭运算。

膨胀: 输出像素的值是所有输入像素值中的最大值。在二值图像中,如果领域中有一个像素值为1,则输出像素值为1。如下图

计算机视觉:利用OpenCV和Python进行车辆计数详细步调-9.jpg




侵蚀:输出像素的值是所有输入像素值中的最小值,在二值图像中,若果领域中有一个像素值为0,则输出像素值为0,看下图:

计算机视觉:利用OpenCV和Python进行车辆计数详细步调-10.jpg




膨胀和侵蚀的Python实现如下:
import cv2import numpy as npimg = cv2.imread("carcount.png")ret,thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)kernel = np.ones((3,3),np.uint8)erosion = cv2.erode(img,kernel,iterations = 1)dilation = cv2.dilate(img,kernel,iterations = 1)cv2.imwrite("erode.png",erosion)cv2.imwrite("dilate.png",dilation)
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-11.jpg




查看侵蚀和扩张的结果如下图:

计算机视觉:利用OpenCV和Python进行车辆计数详细步调-12.jpg




开运算:先侵蚀再膨胀,可以去失落目标外的孤立点。目标外的孤立点是和目标像素值一样的点,而非布景像素点,即为1而非0(0暗示选取的空洞或布景像素值)。使用侵蚀,布景扩展,该孤立点被侵蚀失落,可是侵蚀会致使目标区域缩小一圈,因此需要再进行膨胀操作,将目标区域扩展回原来巨细。所以,要使用开运算去除目标外的孤立点。

计算机视觉:利用OpenCV和Python进行车辆计数详细步调-13.jpg




闭运算:先膨胀再侵蚀,可以去失落目标内的孔。目标内的孔,属于周围都是值为1,内部空洞值为0.目的是去除周围都是1的像素中间的0值。闭运算首先进行膨胀操作,目标区域扩张一圈,将目标区域的0去除,可是目标区域同时也会向外扩张一圈,因此需要使用侵蚀操作,使得图像中的目标区域恢复到之前的巨细。

计算机视觉:利用OpenCV和Python进行车辆计数详细步调-14.jpg




代码实现如下:
import cv2import numpy as npimg = cv2.imread("carcount.png")ret,thresh1 = cv2.threshold(img,200,255,cv2.THRESH_BINARY)kernel = np.ones((5,5),np.uint8)opening = cv2.morphologyEx(thresh1, cv2.MORPH_OPEN, kernel)closing = cv2.morphologyEx(thresh1, cv2.MORPH_CLOSE, kernel)cv2.imwrite("carcount_closing.png",closing)cv2.imwrite("carcount_opening.png",opening)
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-15.jpg




6.寻找轮廓

到目前为止,我们已经过滤了视频流文件,然后我们将检测移动对象上的轮廓。
import numpy as npimport cv2cap = cv2.VideoCapture('traf.mp4') #Open video filefgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True) #Create the background substractorkernelOp = np.ones((3,3),np.uint8)kernelCl = np.ones((11,11),np.uint8)while(cap.isOpened()): ret, frame = cap.read() #read a frame fgmask = fgbg.apply(frame) #Use the substractor try: ret,imBin= cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY) #Opening (erode->dilate)  mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kernelOp) #Closing (dilate -> erode)  mask = cv2.morphologyEx(mask , cv2.MORPH_CLOSE, kernelCl) except: #if there are no more frames to show... print('EOF') break _, contours0, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) for cnt in contours0: cv2.drawContours(frame, cnt, -1, (0,255,0), 3, 8) cv2.imshow('Frame',frame) #Abort and exit with 'Q' or ESC k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release() #release video filecv2.destroyAllWindows() #close all openCV windows
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-16.jpg




计算机视觉:利用OpenCV和Python进行车辆计数详细步调-17.jpg




7.界说对象

这是一个很是有趣的部分,我们将轮廓分类为车辆对象。此界说以小红点标识表记标帜。Python实现如下:
import numpy as npimport cv2cap = cv2.VideoCapture('traf.mp4') #Open video filefgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True) #Create the background substractorkernelOp = np.ones((3,3),np.uint8)kernelCl = np.ones((11,11),np.uint8)areaTH = 500while(cap.isOpened()): ret, frame = cap.read() #read a frame  fgmask = fgbg.apply(frame) #Use the substractor try: ret,imBin= cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY) #Opening (erode->dilate)  mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kernelOp) #Closing (dilate -> erode)  mask = cv2.morphologyEx(mask , cv2.MORPH_CLOSE, kernelCl) except: #if there are no more frames to show... print('EOF') break _, contours0, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) for cnt in contours0: cv2.drawContours(frame, cnt, -1, (0,255,0), 3, 8) area = cv2.contourArea(cnt) print (area) if area > areaTH: ################# # TRACKING # #################  M = cv2.moments(cnt) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) x,y,w,h = cv2.boundingRect(cnt) cv2.circle(frame,(cx,cy), 5, (0,0,255), -1)  img = cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)  cv2.imshow('Frame',frame)  #Abort and exit with 'Q' or ESC k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release() #release video filecv2.destroyAllWindows() #close all openCV windows
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-18.jpg




计算机视觉:利用OpenCV和Python进行车辆计数详细步调-19.jpg




8.移动标的目的

您已经知道我们的视频上有什么对象,现在您想知道它们往哪里移动(如:向上/向下)。在第一帧中,您需要将检测到的ID对象保存初始位置。然后,在下一帧中,要继续跟踪对象,必须将帧中对象的轮廓与首次呈现时的ID匹配,并保存该对象的坐标。然后,在对象跨越视频的鸿沟(或一定量的限制)之后,您可以使用存储的位置来评估它是向上或是向下移动。
import numpy as npimport cv2import Carimport timecap = cv2.VideoCapture('peopleCounter.avi') #Open video filefgbg = cv2.createBackgroundSubtractorMOG2(detectShadows = True) #Create the background substractorkernelOp = np.ones((3,3),np.uint8)kernelCl = np.ones((11,11),np.uint8)#Variablesfont = cv2.FONT_HERSHEY_SIMPLEXcars = []max_p_age = 5pid = 1areaTH = 500while(cap.isOpened()): ret, frame = cap.read() #read a frame  fgmask = fgbg.apply(frame) #Use the substractor try: ret,imBin= cv2.threshold(fgmask,200,255,cv2.THRESH_BINARY) #Opening (erode->dilate)  mask = cv2.morphologyEx(imBin, cv2.MORPH_OPEN, kernelOp) #Closing (dilate -> erode)  mask = cv2.morphologyEx(mask , cv2.MORPH_CLOSE, kernelCl) except: #if there are no more frames to show... print('EOF') break _, contours0, hierarchy = cv2.findContours(mask,cv2.RETR_EXTERNAL,cv2.CHAIN_APPROX_NONE) for cnt in contours0: cv2.drawContours(frame, cnt, -1, (0,255,0), 3, 8) area = cv2.contourArea(cnt) if area > areaTH: ################# # TRACKING # #################  M = cv2.moments(cnt) cx = int(M['m10']/M['m00']) cy = int(M['m01']/M['m00']) x,y,w,h = cv2.boundingRect(cnt)  new = True for i in cars: if abs(x-i.getX()) <= w and abs(y-i.getY()) <= h: # the object is close to one that was already detected before new = False i.updateCoords(cx,cy) #Update coordinates on the object and resets age break if new == True: p = Car.MyCar(pid,cx,cy, max_p_age) cars.append(p) pid += 1  cv2.circle(frame,(cx,cy), 5, (0,0,255), -1) img = cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2)  cv2.drawContours(frame, cnt, -1, (0,255,0), 3) for i in cars: if len(i.getTracks()) >= 2: pts = np.array(i.getTracks(), np.int32) pts = pts.reshape((-1,1,2)) frame = cv2.polylines(frame,[pts],False,i.getRGB()) if i.getId() == 9: print (str(i.getX()), ',', str(i.getY())) cv2.putText(frame, str(i.getId()),(i.getX(),i.getY()),font,0.3,i.getRGB(),1,cv2.LINE_AA)   cv2.imshow('Frame',frame)  #Abort and exit with 'Q' or ESC k = cv2.waitKey(30) & 0xff if k == 27: breakcap.release() #release video filecv2.destroyAllWindows() #close all openCV windows
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-20.jpg




计算机视觉:利用OpenCV和Python进行车辆计数详细步调-21.jpg




9.计数

你之前的部分已经知道如何检测对象运动的体例。现在,我们必须看到这个列表并确定对象是否在我们的视频中向上或下降。要做到这一点,首先将创作发现两条线,这将显示什么时候来评估对象的标的目的(line_up,line_down)。并且还会有两行界限,告诉我们什么时候停止跟踪物体(up_limit,down_limit)。
<div class="pgc-img">
计算机视觉:利用OpenCV和Python进行车辆计数详细步调-22.jpg



更多内容回复查看:
游客,如果您要查看本帖隐藏内容请回复
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码

10

主题

46

帖子

37

金币

连长

Rank: 7Rank: 7Rank: 7

积分
132

新兵

发表于 2018-10-16 16:33:07 | 显示全部楼层
转不看系列
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码

29

主题

59

帖子

60

金币

连长

Rank: 7Rank: 7Rank: 7

积分
180
发表于 2018-10-16 16:33:20 | 显示全部楼层
[赞]
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码

10

主题

35

帖子

21

金币

连长

Rank: 7Rank: 7Rank: 7

积分
102

新兵

发表于 2018-10-16 16:33:37 | 显示全部楼层
转发了
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码

11

主题

55

帖子

25

金币

连长

Rank: 7Rank: 7Rank: 7

积分
156

新兵

发表于 2018-10-16 16:33:55 | 显示全部楼层
转发了
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码

7

主题

35

帖子

117

金币

连长

Rank: 7Rank: 7Rank: 7

积分
105

小资土豪新兵

发表于 2018-10-16 16:34:39 | 显示全部楼层
转发了
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码

15

主题

46

帖子

34

金币

连长

Rank: 7Rank: 7Rank: 7

积分
135

新兵

发表于 2018-10-16 16:35:09 | 显示全部楼层
转发了
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码

21

主题

55

帖子

42

金币

连长

Rank: 7Rank: 7Rank: 7

积分
165
发表于 2018-10-16 16:35:23 | 显示全部楼层
转发了
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码

10

主题

41

帖子

23

金币

连长

Rank: 7Rank: 7Rank: 7

积分
120

新兵

发表于 2018-10-16 16:35:33 | 显示全部楼层
转发了
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码

11

主题

47

帖子

25

金币

连长

Rank: 7Rank: 7Rank: 7

积分
132
发表于 2018-10-16 16:36:16 | 显示全部楼层
转发了
C VC C++ MFC 汇编 函数 脚本 辅助 多开 注入 内存 插件 破解 基址 窗口 大漠 绑定 编程 交流 论坛 实例 源码
您需要登录后才可以回帖 登录 | 立即注册

本版积分规则

VC中文网 - 豫ICP备14012807号|小黑屋|联系客服|金币冲值|VC中文网

GMT+8, 2020-8-11 17:41 , Processed in 0.117189 second(s), 28 queries .

Powered by Discuz! X3.4

© 2001-2017 Comsenz Inc.

快速回复 返回顶部 返回列表